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Abstract

In an actively controlled system, time delay exists inevitably. Neglecting time delay may cause
degradation of control performance or even induce instability to the dynamic system. In this paper,
instantaneous optimal control method for vibration control of linear sampled-data systems with time delay
in control is investigated. By a peculiar integral transformation, the first order state equation with time
delay is transformed into the standard first order state equation, which contains no time delay. Then the
optimal controller is designed based on the numerical algorithm of the regular fourth order Runge–Kutta
method. Since the obtained controller contains integral term, which is not practical for control
implementation, the numerical algorithm for this integral term is investigated too. Since the controller is
deduced directly from the time-delay differential equation, the control method presented is prone to
guarantee system stability. Thus the presented control method can be applicable to the case of large time
delay. The performance of the control method is demonstrated by numerical simulation. Simulation results
indicate that this control method is feasible and is an attractive strategy for dealing with the time delay in
vibration control systems and is effective in suppressing maximum structural responses. Instability in
structural responses may occur if the systems with time delay are controlled using the controller designed
in the case of no time delay.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent years, the technique of active vibration control has been developing rapidly, and many
active control methods have been used in practical engineering. Results both in laboratory
demonstrations and in actual measurements for practical engineering demonstrate that vibration
suppression by active control is emerging as a powerful technique to improve the performance of
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structures against earthquakes, wind and other dynamic excitations. Meanwhile, many problems
that affect this technique towards large-scale practical application have been found [1,2]. Time
delay is one of these problems which needs a serious attention.

Time delay exists inevitably in active control systems. Time delay occurs mainly because of: (1)
time taken in on-line data acquisition from sensors at different locations of the systems, (2) time
taken in filtering, processing of these data for required control force calculation and transmission
of the control force to the actuator, (3) time taken by the actuator in building up the required
control force. Because of the time delay, unsynchronized control force may be applied to the
systems, which may cause degradation in the efficiency of control or may render the control
systems unstable [1,2].

Time-delay problem has been studied by researchers in many fields of applications, such as
aeronautical, astronautical, mechanical, chemical and electrical engineering. A great deal of
literature has been available in different disciplines [3–6] and various methodologies to deal with
the problem of a system time delay have been available in the literature. For the particular
application of vibration control, the technique of time delay compensation [7–10] has been
investigated for reducing or eliminating the effect of the time delay. In the time-delay
compensation, the controller is designed without considering the existence of the time delay
and then the control feedback gain is modified with considering the time delay. However, system
stability is not guaranteed as the time delay becomes larger [11]. Therefore, this technique is in
general available for the case of small time delay. Except the technique of time-delay
compensation, another method, in which controller is deduced directly from time-delay
differential equation, can be available for dealing with the time delay in vibration system. In
Ref. [11], the discrete optimal control method is studied for an actively controlled system with
time delay in control. Since the time delay is incorporated in the mathematical model for the
structural control system throughout the derivation of the proposed method, system performance
and dynamic stability are guaranteed. Thus this method is suitable not only for small time delay
but also for large time delay. This kind of design method which considers time delay at the very
beginning of the derivation of control algorithm is more feasible and is an attractive approach in
control design. On the other hand, in addition to the classical optimal control method, many other
control methods, including instantaneous optimal control [12–14], variable structure control [15],
modal control [16], HN control [17], and so on have been investigated before. To guarantee
control performance and system stability, it is essential to consider the time delay problem in
control design when using these control methods because of the inevitable existence of the time
delay and its concern of system dynamic stability.

The instantaneous optimal control method is proposed by Yang and is investigated for linear
structures [12,13]. The numerical results indicate that this method is effective in suppressing
maximum responses of the structures and is feasible for practical application. The purpose of this
paper is to investigate an instantaneous optimal control method for vibration control of linear
sampled-data systems with time delay in control, in which the optimal controller is designed with
considering the time delay in the time-delay differential equation. By the peculiar integral
transformation given by Kwon [18], the differential equation with time delay can be changed into
that which contains no time delay apparently. Then the controller may be designed according to
the instantaneous optimal control method given by Yang [12–14]. Substituting the integral
transformation into the obtained controller, an integral term may appear in the controller, which
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is not practical for control implementation. The numerical algorithm for this integral term is
investigated in this paper too. Finally, numerical simulations are carried out for two structural
models to demonstrate the performance and feasibility of the presented control method.

This paper is organized as follows. Section 2 first briefly presents the system motion equation
with an explicit time delay in the differential equation, and then introduces a peculiar integral
transformation that reformulates the system dynamics into a standard first order differential
equation without any time delay. The numerical algorithm for this standard first order differential
equation using the regular fourth order Runge–Kutta method is presented subsequently. The
proposed control design is presented in Section 3, including the controller design and a numerical
algorithm of its implementation. Section 4 provides the simulation and comparison studies of two
structural models using the proposed control method. Finally, a conclusion remark is given in
Section 5.

2. Motion equation

Consider a linear structure modelled by an n-degree-of-freedom lumped mass–spring–dashpot
system with time delay in control. The matrix equation of motion of the structural system is
written as

M .XðtÞ þ C ’XðtÞ þ KX ¼ H1pðtÞ þH2Uðt � lÞ; ð1Þ

where X ¼ ½x1;x2;y;xn�T is an n-dimensional vector of displacement; M; C and K are (n � n)
mass, damping and stiffness matrices, respectively; pðtÞ is an m-dimensional vector of external
excitations, H1 is a (n � m) matrix denoting the location of the external excitations; Uðt � lÞ is an
r-dimensional vector of controllers, in which l is the time delay;H2 is a (n � r) matrix denoting the
location of the controllers.

In the state-space representation, Eq. (1) becomes

’ZðtÞ ¼ AZðtÞ þ BUðt � lÞ þ PðtÞ; ð2Þ

where ZðtÞ is a 2n-dimensional state vector; A is a (2n � 2n) system matrix; B is a (2n � r) matrix
and PðtÞ is a 2n-dimensional excitation vector, respectively, given by

ZðtÞ ¼
XðtÞ
’XðtÞ

" #
; A ¼

0

�M�1K

In

�M-1C

" #
; PðtÞ ¼

0

M-1H1pðtÞ

" #
; B ¼

0

M�1H2

" #
;

where In is a (n � n) identity matrix.
Making the transformation [18]

YðtÞ ¼ ZðtÞ þ
Z 0

�l
e�AðZþlÞBUðt þ ZÞ dZ; ð3Þ

Eq. (2) can be written as

’YðtÞ ¼ AYðtÞ þ BðAÞUðtÞ þ PðtÞ ð4Þ

in which

BðAÞ ¼ e�AlB; ð5Þ
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where BðAÞ is a (2n� r) matrix. From Ref. [19], we can obtain that Eq. (4) is controllable if Eq. (2)
is absolutely controllable.

When the fourth order Runge–Kutta method is used to solve Eq. (4), we have the following
algorithm [12–14]:

YðtÞ ¼ Yðt � 2DtÞ þ 1
6
ðA0 þ 2A1 þ 2A2 þ A3Þ; ð6Þ

where Dt is the integration time step; and A0; A1; A2 and A3 are all 2n-dimensional vectors and can
be written as follows:

A0 ¼ 2Dt½AYðt � 2DtÞ þ BðAÞUðt � 2DtÞ þ Pðt � 2DtÞ�; ð7aÞ

A1 ¼ 2Dt½AYðt � 2DtÞ þ 0:5AA0 þ BðAÞUðt � DtÞ þ Pðt � DtÞ�; ð7bÞ

A2 ¼ 2Dt½AYðt � 2DtÞ þ 0:5AA1 þ BðAÞUðt � DtÞ þ Pðt � DtÞ�; ð7cÞ

A3 ¼ 2Dt½AYðt � 2DtÞ þ AA2 þ BðAÞUðtÞ þ PðtÞ�: ð7dÞ

Substituting Eqs. (7a)–(7d) into Eq. (6), we have

YðtÞ ¼ Dðt � 2Dt; t � DtÞ þ
Dt

3
½BðAÞUðtÞ þ PðtÞ�; ð8Þ

where Dðt � 2Dt; t � DtÞ is a 2n-dimensional vector and can be written as

Dðt � 2Dt; t � DtÞ ¼ ðI2n þ 2DtAÞYðt � 2DtÞ þ 1
3
DtfAðA0 þ A1 þ A2Þ

þ BðAÞ½Uðt � 2DtÞ þ 4Uðt � DtÞ� þ ½Pðt � 2DtÞ þ 4Pðt � DtÞ�g; ð9Þ

where I2n is a (2n � 2n) identity matrix.

3. Instantaneous optimal control

The instantaneous optimal control method was proposed by Yang [12,13] for linear structures
and was extended later to non-linear and hysteretic structures [14]. In this section, we study the
control design and control implementation when using the instantaneous optimal control method
for the above time-delay dynamic system.

3.1. Design of controller

The time-dependent quadratic objective function is given by

JðtÞ ¼ YTðtÞQYðtÞ þUTðtÞRUðtÞ; ð10Þ

where Q is a (2n� 2n) positive-semidefinite weighting matrix; and R is a (r � r) positive-definite
weighting matrix, respectively, representing the relative importance of the response vector YðtÞ
and the control vector UðtÞ: The two weighting matrices are often determined by trial runs until
the selected values result in significant reduction of responses while control forces are also
acceptable. In general, large values of Q result in smaller values of the responses of the structure.
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The implication of minimizing the objective function given by Eq. (10) is that the performance
index JðtÞ is minimized at every time instant t:

To minimize the objective function JðtÞ; the Hamilton function H is obtained by introducing a
2n-dimensional Lagrangian multiplier vector LðtÞ:

H ¼YTðtÞQYðtÞ þUTðtÞRUðtÞ

þ LTðtÞ YðtÞ �Dðt � 2Dt; t � DtÞ �
Dt

3
½BðAÞUðtÞ þ PðtÞ�

� �
: ð11Þ

The necessary conditions for minimizing JðtÞ; subjected to the constraint of Eq. (8), can be written
as

qH

qYðtÞ
¼ 0;

qH

qUðtÞ
¼ 0;

qH

qLðtÞ
¼ 0: ð12Þ

Substituting Eq. (11) into the first two expressions of Eq. (12), we have

2QYðtÞ þ LðtÞ ¼ 0; ð13Þ

2RUðtÞ �
Dt

3
½BðAÞ�TLðtÞ ¼ 0: ð14Þ

Substituting Eq. (11) into the third expression of Eq. (12) deduces Eq. (8). From Eqs. (13) and
(14), the optimal controller can be obtained as

UðtÞ ¼ �
Dt

3
R�1½BðAÞ�TQYðtÞ: ð15Þ

Substituting Eq. (15) into Eq. (8), we have

YðtÞ ¼ I2n þ
Dt

3

� �2

½BðAÞ�R�1½BðAÞ�TQ

" #�1

Dðt � 2Dt; t � DtÞ þ
Dt

3
PðtÞ

� 	
: ð16Þ

Substituting Eq. (16) into Eq. (15), we have

UðtÞ ¼ �
Dt

3
R�1½BðAÞ�TQ I2n þ

Dt

3

� �2

½BðAÞ�R�1½BðAÞ�TQ

" #�1

� Dðt � 2Dt; t � DtÞ þ
Dt

3
PðtÞ

� 	
: ð17Þ

It should be noted that for the regular fourth order Runge–Kutta method, the integration time
step is Dt; which is twice Dt used in Eqs. (6)–(9), i.e., Dt ¼ 2Dt: In other words, the computation
step in the current numerical scheme is Dt; which is one-half that used in the regular fourth order
Runge–Kutta method.

When there is no time delay in the system, namely l ¼ 0; from Eqs. (3) and (5), we have
BðAÞ ¼ B and YðtÞ ¼ ZðtÞ [here the integral term in Eq. (3) is equal to zero], so the controller can
be written as UðtÞ ¼ 2ðDt=3ÞR21BTQZðtÞ: In this case, we can observe from Eqs. (9) and (17) that
the controller UðtÞ at time instant t is dependent on the external excitation pðtÞ at time instant t;
the controller Uðt2DtÞ and the external excitation pðt2DtÞ at time instant ðt2DtÞ; and the state
vector Zðt22DtÞ; the controller Uðt22DtÞ and the external excitation pðt22DtÞ at time instant
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(t22Dt). When la0; UðtÞ is relative to those mentioned above and the integral term in Eq. (3) as
well. The computation of this term will be discussed in the following.

3.2. Control implementation

When the instantaneous optimal control method is used with considering the existence of the
time delay, implementation of the controller given by Eq. (17) depends on the computation of the
integral term in Eq. (3). Numerical algorithm for this integral term is investigated in this section.

Let

Z0ðtÞ ¼
Z 0

�l
e�AðZþlÞBUðt þ ZÞ dZ: ð18Þ

Assume that the data sampling period %T is identical with the computation step, i.e., %T ¼ Dt: Also,
assume the time delay l can be written as

l ¼ l %T � %m; ð19Þ

where l > 0 is a integer number; and 0p %mo %T: When %m ¼ 0; the time delay is integer times of the
sampling period. When %ma0; the time delay is non-integer times of the sampling period.

Zero order holder is used in the structure, i.e.,

UðtÞ ¼ Uðk %TÞ; k %Tptoðk þ 1Þ %T: ð20Þ

Eq. (20) represents that the actuators in the structure exert constant control forces on the
structure during two adjoining sampling points.

Noting that numerical computation is carried out only on every sampling point, Eq. (18) can be
written as

Z0ðtÞ ¼
Z 0

�ðl %T� %mÞ
e�Aðl

%T� %mÞe�AZBUðt þ ZÞ dZ

¼ e�Aðl
%T� %mÞ

Z �ðl�1Þ %T

�ðl %T� %mÞ
e�AZ

"
BUðt þ ZÞ dZþ

Z �ðl�2Þ %T

�ðl�1Þ %T
e�AZBUðt þ ZÞ dZ

þ?þ
Z 0

� %T

e�AZBUðt þ ZÞ dZ

#

¼ e�Aðl
%T� %mÞ

"
eAðl

%T� %mÞ:

Z %T� %m

0

e�AZ1 dZ1 BUðt � l %TÞ þ eAðl�1Þ %T
Z %T

0

e�AZ2 dZ2 BU½t � ðl � 1Þ %T�

þ?þ eA
%T

Z %T

0

e�AZl dZl BUðt � %TÞ

#
: ð21Þ

Let

FðxÞ ¼ eAx; ð22Þ

GðxÞ ¼
Z x

0

e�Ay dy: ð23Þ
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In consideration of %T ¼ Dt; Eq. (21) can be written as

Z0ðtÞ ¼ I2n�2nGðDt � %mÞUðt � lDtÞ þ Fð %m � DtÞGðDtÞU½t � ðl � 1ÞDt�

þ Fð %m � 2DtÞGðDtÞU½t � ðl � 2ÞDt� þ?þ F½ %m � ðl � 1ÞDt�GðDtÞUðt � DtÞ: ð24Þ

When %m ¼ 0; Eq. (24) can be written as

Z0ðtÞ ¼ I2n�2nGðDtÞUðt � lDtÞ þ Fð�DtÞGðDtÞU½t � ðl � 1ÞDt�

þ Fð�2DtÞGðDtÞU½t � ðl � 2ÞDt� þ?þ F½�ðl � 1ÞDt�GðDtÞUðt � DtÞ: ð25Þ

From Eqs. (24) and (25), we can observe that, in every step of numerical computation
for the controller given by Eq. (17), it contains the linear combination of former l steps
of control.
GðxÞ given by Eq. (23) can be determined according to the following formula [20]:

GðxÞ ¼
Z x

0

e�Ay dy ¼
XN
n¼1

ð�AÞn�1xn

n!
: ð26Þ

When x is given, GðxÞ will tend to a constant matrix after limited steps of iterative computation.

4. Numerical examples

To illustrate the application of the presented control method and its performance, simulation
results for a three-story and a six-story seismic-excited structural models are presented in this
section. The model sketch is shown by Fig. 1. The El Centro earthquake and the Tianjin
earthquake (in China) are used as the input excitations, respectively.

4.1. Example 1: three-story structural model subjected to the El Centro earthquake excitation

A three-story model studied by Yang et al. [15] is considered as shown in Fig. 1, in which every
story unit is identically constructed. The mass, stiffness and damping coefficient of each story unit
are mi ¼ 1000 kg, ki ¼ 980 kN/m, and ci ¼ 1:407 kN s/m, respectively (i ¼ 123). The sampling
period and numerical computation step are both taken by 0.01 s, i.e., %T ¼ Dt ¼ 0:01 s: An active
control force is applied on the first-story unit, as shown in Fig. 1.

mn

m2

m1

u(t)

Fig. 1. Structural model.
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As such in Ref. [21], the variable xi (i=1–3) in Eq. (1) is designated to be the interstory drift of
the ith story unit of the structure, representing the relative displacement of the ith story unit with
respect to the (i�1)th story unit. The variables ’xi and .xi are the corresponding velocity and
acceleration variables. The matrices M; C; K; H1 and H2 in Eq. (1) are

M ¼ 1000�

1 0 0

1 1 0

1 1 1

2
64

3
75; C ¼ 1407�

1 �1 0

0 1 �1

0 0 1

2
64

3
75;

K ¼ 980; 000�

1 �1 0

0 1 �1

0 0 1

2
64

3
75; H1 ¼ �1000�

1

1

1

2
64

3
75 and H2 ¼

1

0

0

2
64

3
75

respectively.
The El Centro earthquake scaled to a maximum acceleration of 0.12 g is used as the input

excitation herein. The earthquake episode is 8 s. Time history of the earthquake is shown in
Fig. 2(a).

The maximum interstory drifts xi and the maximum absolute floor accelerations .xai of every
story unit, without control for the structure, are shown in columns (2) and (3) of Table 1.

For active structural control of the building structure, the hydraulic type of actuator is
popularly used as a control-force device because of the large weight of the structure. However, the
time-delay problem exists obviously in this type of actuator. Here consider the case of l ¼ 0:1 s.
Namely, the delayed time in the control system is 0.1 s. The dimension of the weighting matrix Q
given in Eq. (10) is (6� 6). Because there is only one actuator in the structure, the weighting
matrix R in Eq. (10) consists of one element and is a scalar. All elements of the weighting matrixQ
are set to be zero except that elements of the fourth row of Q are chosen to be
Q4j=[103,103,10,10,1,1]. The scalar R is assigned to be R ¼ 1� 1029: When the proposed

 Time(s) 

 Time(s) 

0 1 2 3 4 5 6 7 8
-1

0

1.5

A
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n 
(m

/s
2 )
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(m
/s
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-3

0

3

(a)

(b)

Fig. 2. Time histories of the El Centro earthquake and the Tianjin earthquake. (a) The El Centro earthquake, (b) The

Tianjin earthquake.
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control method is used for the structure, the maximum response quantities of every story unit and
the maximum required control force Umax are shown in columns (4) and (5) of Table 1, denoted by
‘‘Case I’’. Comparing the results of columns (4) and (5) with columns (2) and (3) shows the
effectiveness of the proposed control method. Next consider the case of l ¼ 0:3 s. Elements of the
Q matrix are chosen to be Q4j=[105,104,103,0,0,0] with other elements being zero. The scalar R is
given by R ¼ 1:5� 1027: The simulation results are listed in columns (6) and (7) of Table 1,
denoted by ‘‘Case II’’. Compared with the result listed in columns (2) and (3) of Table 1, the
results in columns (6) and (7) are also acceptable.

In Refs. [12–14], the instantaneous optimal control method was proposed by Yang and was
investigated for application to seismically excited building structures without existence of time
delay. If no time delay exists, the controller given by Eq. (15) is the same as that given by Yang
[14]. In this case, BðAÞ ¼ B in Eq. (15). Using this controller with no time delay to control the
system with the delayed times l ¼ 0:1 and 0:3 s in control, respectively, both the control systems
become unstable. Therefore, time-delay problem is of importance for control design since it exists
inevitably in an actively controlled system. It is better not to put any control action into the
structural system before time delay is properly analyzed and tackled.

Now consider the comparisons of control effectiveness under the same control cost.
When no time delay exists, using the controller with l ¼ 0 for the system, the maximum response
quantities of every story unit and the maximum control forces are listed in columns (8)–(11) of
Table 1, denoted by ‘‘Case III’’ and ‘‘Case IV’’. In the calculations for columns (8)–(11), the
weighting matrixQ is chosen to be the same as Case I and Case II of Table 1, whereas the scalar R
is adjusted such that the maximum control forces are Umax ¼ 2452 and Umax ¼ 1987 N;
respectively. We can observe from the comparisons of columns (4) and (5) with (8) and (9),
and columns (6) and (7) with (10) and (11) that, under the same control cost, the control
performance of the proposed method is close to that when no time delay exists except that the
value of interstory drift of the first story unit is a little bigger. However, the results shown in
columns (4) and (5) and columns (8) and (9) of Table 1 are much small compared with that shown
in columns (2) and (3).

In addition, extensive numerical simulation indicates that, when the delayed times l ¼ 0:1 and
0:3 s exist, respectively, in the control system, instability in structural responses both occurs when
the method of time delay compensation [10] is used for the system.

Table 1

Maximum response quantities and maximum required control force of the three-story model under the El Centro

earthquake excitation (xi: cm, .xai: cm/s2)

Story No control Case I

(l ¼ 0:1 s);

Umax ¼ 2452 N

Case II

(l ¼ 0:3 s);

Umax ¼ 1987 N

Case III

(l ¼ 0);

Umax ¼ 2452 N

Case IV

(l ¼ 0);

Umax ¼ 1987 N

xi .xai xi .xai xi .xai xi .xai xi .xai

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 1.37 330 0.70 235 0.88 232 0.45 190 0.59 203

2 1.04 496 0.41 210 0.58 295 0.53 277 0.59 331

3 0.61 600 0.25 246 0.33 326 0.32 322 0.35 342
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Fig. 3 shows the time histories of the third story unit and the control force when the proposed
control method is used for the structure with l ¼ 0:1 s in control (Case I of Table 1). Time
histories of the third story unit when no time delay exists (Case III of Table 1), and time histories
without control for the structure are shown in Fig. 3 for comparison too. We can observe from
Fig. 3 that good control effectiveness can be achieved when the proposed control method is used.

4.2. Example 2: six-story structural model subjected to the Tianjin earthquake excitation

The structural model studied by Fayaz et al. [22] is considered herein. This model is a six-story
base-isolated structure, in which the first-story unit is the base-isolated system. The mass, stiffness
and damping coefficient of each story unit are as follows:

m1 ¼ 6800 kg; mi ¼ 5897 kg ði ¼ 226Þ; k1 ¼ 1200 kN=m; k2 ¼ 33; 732 kN=m;

k3 ¼ 29; 093 kN=m; k4 ¼ 28; 621 kN=m; k5 ¼ 24; 954 kN=m; k6 ¼ 19; 054 kN=m;

c1 ¼ 2:4 kN s=m; ci ¼ 0:002ki kN s=m ði ¼ 226Þ:
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 d
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m
/s
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C
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(a)

(b)

(c)

Fig. 3. Time histories of the third story unit and control force under the following three control strategies: no control,

instantaneous optimal control without time delay and instantaneous optimal control with time delay: (a) interstory

drifts: no control - - - - - - - - -; optimal control without time delay ––––; optimal control with time delay ––––; (b)

absolute acceleration: no control - - - - - - - - -; optimal control without time delay ––––; optimal control with time delay

––––; (c) control force: optimal control without time delay ––––; optimal control with time delay ––––.
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The matricesM; C; K; H1 and H2 in Eq. (1) have the same constitution with those in Example 1,
and omitted herein. Again assume that only the first story unit of the structure is applied with
active control force. %T ¼ Dt ¼ 0:01 s is used again. The Tianjin earthquake (in China) scaled to a
maximum acceleration of 0.3 g is used as the input excitation. The earthquake episode is 10 s.
Time history of the Tianjin earthquake is shown in Fig. 2(b).

For the structure equipped with the base-isolated system and with the earthquake
ground acceleration given in Fig. 2(b), the maximum interstory drifts and the maximum
absolute floor accelerations of every story unit, without control for the structure, are shown
in columns (2) and (3) of Table 2. As observed from these two columns, the maximum
response quantities of the upper story units upon the base floor are very small. The advantage of
using a base isolation system to protect the structure is clearly demonstrated. However, the
deformation of the base isolation system shown in the first row of column (2) of Table 2 may be
excessive.

To protect the base isolation system, an actuator is connected directly to the base isolation
system. Consider the case without existence of time delay in the control system. In this case,
BðAÞ ¼ B: The dimension of the Q matrix in Eq. (10) is (12� 12), whereas the weighting matrix R
consists of only one element and is a scalar. Since there is only one actuator installed on the base
floor, only elements in the seventh row and the eighth row of the Q matrix are relevant to the
controller [see Eq. (15)]. As a result, all elements of the Q matrix that have no effect on the
controller are set to be zero for convenience. Furthermore, elements in the eighth row of the Q
matrix will assigned to be zero for simplicity. The values of the seventh row of the Q matrix are
assigned to be Q7j=[0.25,5.5,4.5,3.4,2.4,1.4,3.5,0.5,0.5,0.5,0.5,0.4]. The scalar R is chosen to be
1.3� 10–11. Using the optimal controller with no time delay, the maximum response quantities
and the maximum required control force are listed in columns (4) and (5) of Table 2, denoted by
‘‘Case I’’. We can observe that a significant reduction of the structure response, in particular the
response of the base isolation system, can be achieved using the actuator for the structure. It is
further observed from columns (2)–(5) of Table 2 that, for the structure equipped with a base

Table 2

Maximum response quantities and maximum required control force of the six-story model under the Tianjin

earthquake excitation (xi: cm, .xai: cm/s2)

Story No control Case I

(l ¼ 0);

Umax ¼ 37:30 kN

Case II

(l ¼ 0);

Umax ¼ 35:99 kN

Case III

(l ¼ 0:3 s);

Umax ¼ 45:26 kN

Case IV

(l ¼ 0:3 s);

Umax ¼ 35:99 kN

xi .xai xi .xai xi .xai xi .xai xi .xai

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 16.86 523 4.20 207 4.32 208 6.92 213 9.63 266

2 0.49 538 0.17 180 0.17 193 0.16 211 0.22 265

3 0.47 555 0.17 182 0.16 187 0.15 194 0.21 262

4 0.36 569 0.13 206 0.13 204 0.12 187 0.16 254

5 0.28 582 0.11 221 0.11 219 0.11 195 0.13 263

6 0.18 591 0.08 250 0.08 249 0.08 259 0.09 277
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isolation system, the interstory deformation of each story unit of the upper structure is very small
compared to that of the base isolation system. Thus, the upper structure upon the base isolation
tends to behave like a rigid body. As a result, sensors are not needed for the upper structure. In
other words, displacement and velocity sensors are installed on the base isolation system only, i.e.,
no sensor is installed on the upper structure. To illustrate the control performance in this case, all
the elements of the Q matrix are set to be zero except Qð7; 1Þ and Qð7; 7Þ: For simplicity, the
following values are assigned: Qð7; 1Þ ¼ 0:9; and Qð7; 7Þ ¼ 3:4: The scalar R is the same as the case
of full sensors being installed, i.e., R ¼ 1:3� 10211: The maximum response quantities and the
maximum required control force are listed in columns (6) and (7) of Table 2, denoted by ‘‘Case
II’’. A comparison of columns (4) and (5) with columns (6) and (7) indicates that it is not
necessary to install displacement and velocity sensors on the upper structure. This conclusion is
very important because it is expensive to install sensors. The same conclusion is also obtained in
Ref. [14] by Yang through a numerical simulation for an eight-story seismic-excited building
structure with rubber-bearing isolation system.

Here consider the case with existence of time delay in the control system. Assuming the delayed
time is 0.3 s. As such, in the above, only the base floor is installed with displacement and velocity
sensors. The Q matrix is assigned to be the same as that in the above, i.e., Qð7; 1Þ ¼ 0:9 and
Qð7; 7Þ ¼ 3:4 with other elements being zero. The scalar R is chosen to be R ¼ 0:48� 1029:
Using the proposed control method, the maximum response quantities and the
maximum required control force are shown in columns (8) and (9) of Table 2, denoted by
‘‘Case III’’. It is observed from the comparison of columns (8) and (9) with columns (6)
and (7) that the control performance of the proposed method is close to that without the
existence of time delay except that the maximum required control force is bigger. The control
method proposed is effective in reducing the maximum responses of the structure. Then the scalar
R is adjusted only such that the maximum required control force is the same as the case of
columns (6) and (7), i.e., Umax ¼ 35:99 kN; the numerical results are shown in columns (10) and
(11) of Table 2, denoted by ‘‘Case IV’’. A comparison of columns (10) and (11) with columns (6)
and (7) indicates that, under the same control cost, the maximum response quantities of the
structure when using the proposed control method are a little bigger than that without existence of
time delay. But the values shown in columns (10) and (11) are much smaller than that in columns
(2) and (3).

Fig. 4 shows the time histories of the base floor unit under the following three control
strategies: without control for the structure, using the control method without existence
of time delay (Case II of Table 2), and using the control method with the existence of the delayed
time 0.3 s (Case IV of Table 2). Fig. 5 shows the time histories of the sixth story unit under the
above three control strategies. We can observe from Figs. 4 and 5 that the proposed control
method is an effective control strategy for dealing with the time delay in a vibration control
system.

Our extensive simulation also indicates that both the system instabilities occur when the
controller designed in the case of no time delay is used for the structure with the delayed
time 0.3 s in control not only for the case of every degree of freedom of the structure being
installed with sensors but also for the case of only the base floor being installed with sensors.
Again, the control system with the time delay becomes unstable when the time-delay
compensation method is used.
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5. Conclusion remark

In an actively controlled system, time delay exists inevitably. Neglecting the time delay may
result in instability of the control system. Therefore, it is better to take the time delay into account
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Fig. 5. Time histories of the sixth story unit under the following three control strategies: no control, instantaneous

optimal control without time delay and instantaneous optimal control with time delay: (a) interstory drift: no control

- - - - - - - - -; optimal control without time delay ––––; optimal control with time delay ––––; (b) absolute acceleration: no
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Fig. 4. Time histories of the base floor unit under the following three control strategies: no control, instantaneous

optimal control without time delay and instantaneous optimal control with time delay: (a) interstory drift: no control

- - - - - - - - - -; optimal control without time delay ––––; optimal control with time delay ––––; (b) absolute acceleration:

no control - - - - - - - - -; optimal control without time delay ––––; optimal control with time delay ––––.
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in control design before the active control is practically implemented. In this paper, based on the
computation algorithm of the regular fourth order Runge–Kutta method, the instantaneous
optimal control method with time delay in control is investigated. Since the obtained optimal
controller contains integral term, which is not convenient for control implementation, the
numerical algorithm for this integral term is investigated too. Because the optimal controller is
obtained directly from the time-delay differential equation, system stability can be guaranteed
easily. Thus this control method can be applicable to the case of large time delay. Numerical
simulation results indicate that the control method proposed is effective in reducing maximum
responses of vibration system. The vibration system may suffer from system instability if the time
delay is neglected in control design.

Finally, it is worthy of mention that feedback gain in time-delay control system may possibly
cause the happening of self-excited vibration [23]. Therefore, the choices of the weighting matrices
Q and R given in Eq. (10) should be tried carefully in control design to avoid the happening of
self-excited vibration.
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